A Systematic Relationship between Intraseasonal Variability and Mean State Bias in AGCM Simulations

نویسندگان

  • DAEHYUN KIM
  • ADAM H. SOBEL
  • ERIC D. MALONEY
  • DARGAN M. W. FRIERSON
  • IN-SIK KANG
چکیده

Systematic relationships between aspects of intraseasonal variability (ISV) and mean state bias are shown in a number of atmospheric general circulation model (AGCM) simulations. When AGCMs are categorized as either strong ISV or weak ISV models, it is shown that seasonal mean precipitation patterns are similar among models in the same group but are significantly different from those of the other group. Strong ISV models simulate excessive rainfall over the South Asian summer monsoon and the northwestern Pacific monsoon regions during boreal summer. Larger ISV amplitude also corresponds closely to a larger ratio of eastward-to-westward-propagating variance, but no model matches the observations in both quantities simultaneously; a realistic eastward-to-westward ratio is simulated only when variance exceeds that observed. Three sets of paired simulations, in which only one parameter in the convection scheme is changed to enhance the moisture sensitivity of convection, are used to explore the common differences between the two groups in greater detail. In strong ISV models, the mean and the standard deviation of surface latent heat flux is greater, convective rain fraction is smaller, and tropical tropospheric temperatures are lower compared to weak ISV models. The instantaneous joint relationships between daily gridpoint relative humidity and precipitation differ in some respects when strong and weak ISV models are compared, but these differences are not systematic enough to explain the differences in ISV amplitude. Conversely, there are systematic differences in the frequency with which specific values of humidity and precipitation occur. In strong ISV models, columns with a higher saturation fraction and rain rate occur more frequently and make a greater contribution to total precipitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Coupled Sea Surface Temperatures in the Simulation of the Tropical Intraseasonal Oscillation

This study compares the tropical intraseasonal oscillation (TISO) variability in the Geophysical Fluid Dynamics Laboratory (GFDL) coupled general circulation model (CGCM) and the stand-alone atmospheric general circulation model (AGCM). For the AGCM simulation, the sea surface temperatures (SSTs) were specified using those from the CGCM simulation. This was done so that any differences in the T...

متن کامل

A note on the deficiency of NCEP/NCAR reanalysis surface winds over the equatorial Indian Ocean

[1] The seasonal cycle and intraseasonal variability of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP) reanalysis surface winds over the Indian Ocean (IO) are assessed by comparing them with in situ surface observations from two moored buoys and winds from the SeaWinds scatterometer on the QuikSCAT satellite. The buoys are located in the centra...

متن کامل

Stratosphere–Troposphere Coupling in a Relatively Simple AGCM: The Importance of Stratospheric Variability

The impact of stratospheric variability on the dynamical coupling between the stratosphere and the troposphere is explored in a relatively simple atmospheric general circulation model. Variability of the model’s stratospheric polar vortex, or polar night jet, is induced by topographically forced stationary waves. A robust relationship is found between the strength of the stratospheric polar vor...

متن کامل

Interannual variations of the boreal summer intraseasonal variability predicted by ten atmosphere–ocean coupled models

The reproducibility of boreal summer intraseasonal variability (ISV) and its interannual variation by dynamical models are assessed through diagnosing 21-year retrospective forecasts from ten state-of-the-art ocean– atmosphere coupled prediction models. To facilitate the assessment, we have defined the strength of ISV activity by the standard deviation of 20–90 days filtered precipitation durin...

متن کامل

Downscaling of daily rainfall occurrence over Northeast Brazil using a Hidden Markov Model

A hidden Markov model (HMM) is used to describe daily rainfall occurrence at ten gauge stations in the state of Ceará in northeast Brazil during the February–April wet season 1975–2002. The model assumes that rainfall occurrence is governed by a few discrete states, with Markovian daily transitions between them. Four “hidden” rainfall states are identified. One pair of the states represents wet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010